

Brief introduction : TATA MOTORS LIMITED DHARWAD

BE BOLD | OWN IT | SOLVE TODETHER, BE EV WITHETIC |

TATA MOTORS Connecting Aspirations

2

Manufacturing Process: Dharwad Product Portfolio

BE BOLD | OWN IT | SOLVE TODETHER, BE EVENTHERD

Sp.Energy Consumption in last 3 years (FY21-22 to FY23-24)

Year	No of Energy Saving Projects	Investments (INR Million)	Electrical Savings (Million kWh)	Savings (INR Million)	Impact on SEC (Electrical, thermal)
FY 2021-22	9	0.03	0.59	4.16	101 kWh/Eq. Veh.
FY 2022-23	17	0.62	0.477	3.5	21 kWh/Eq. Veh.
FY 2023-24	8	0.43	0.198	3.2	10 kWh/Eq. Veh.
	34	1.08	1.265	10.86	26 kWh/Eq. Veh.

Sp. Energy Consumption in last 3 years (FY21-22 to FY23-24)

BE BOLD | OWN IT | SOLVE TODETHER, BE EVINTHETIC

TATA MOTORS Connecting Aspirations

Copyright, Confidential, Tata Motors Limited

Competitors, National & Global benchmark : Internal Benchmarking

TATA MOTORS Connecting Aspirations

6

BE BOLD [OWN IT] SOLVE TODETHER, BE EVENTHETIC

Competitors, National & Global benchmark: External Benchmarking

- TML Dharwad is the best industry benchmark both in specific power and specific fuel consumption. However, accurate benchmarking can't be done due to different processes & size of product (UVs).
- We are looking for other international competitors who can be benchmarked in future.

8

List of Major Encon project planned in FY 2024-25

	Major ENCON Projects list for FY 2024-25								
S.No	Title of Project	Annual Electrical Saving	Investment						
		(Million kWh)	(Rs in Million)						
1	HVLS fan for LCV and FES shop	0.018	3						
2	Sustenance of last year EnCON projects :	0.0005	0						
	Optimization of high mast lighting								
3	Energy optimization through KT-02 :	0.025	0.5						
	Real time monitoring of compressed air consumption								
4	Energy optimization through KT-02:	0.02	1						
	100% Real time monitoring of power consumption at shop level								
5	Sustenance of last year EnCON projects :	0.02	0						
	Main paint shops power optimization								
6	Energy optimization through KT-02:								
	100% Real time monitoring of fuel consumption at shop level								
	Total	0.084	4.5						

Copyright, Confidential, Tata Motors Limited

9

		ENCON Projects list FY 2021-22			
Sr. No.	SHOP	Title of Project	Annual Electrical Saving (Million kWh)	Annual Electrical Cost Saving (Rs million)	Investment Made (Rs million)
1		Improving cycle time by removing unused skids in the line	0.336	0.235	0.00
2	2 Paint	To turn off the K factor filter during in B and C shift of off days/nonproduction days	0.180	0.126	0.00
3	TCF	Switched off the top side LED lights in EOL area underpit-01	0.024	0.017	0.00
4		Installation of LED tube lamps for LCV Main Assembly line Station	0.004	0.003	0.002
5		Man cooling Fans are interlocking with LCV Main Line conveyor	0.003	0.002	0.017
6		Installation of LED lamps at smoke pit	0.027	0.019	0.001
7	LCV	Motion detector installation for EOL man cooling fan	0.005	0.003	0.002
8		Installation of 5W LED Lamp for all LCV shop safety pits	0.005	0.003	0.002
9		Installation of LED lamps for LCV wheel alignment pit	0.012	0.008	0.004
		Total	0.595	0.416	0.028

MOREWHEN

BE BOLD | OWN IT | SOLVE TOSETHER, BE EVENTHETIC.

	ENCON Projects list for FY 2022-23								
Sr. No	Title of Project	Annual Electrical Saving (Million kWh)	Investment (Rs in Million)						
1	VFD for Water Pump	0.0249	0.0365						
2	VFD for Water Pump	0.0249	0.0365						
3	VFD for KOD circulation pump	0.0432	0.0365						
4	VFD for Degrese circulation pump	0.0432	0.0365						
5	VFD for ACC oven-1 hot air circulation blower-1	0.018	0.0365						
6	VFD for ACC oven-1 hot air circulation blower-2	0.018	0.0365						
7	VFD for ACC oven-2 hot air circulation blower-1	0.018	0.0365						
8	VFD for ACC oven-2 hot air circulation blower-2	0.018	0.0365						
9	VFD for ACC oven-2 hot air circulation blower-3	0.018	0.0365						
10	VFD for ACC oven-2 hot air circulation blower-4	0.018	0.0365						
11	VFD for PCC oven hot air circulation blower-1	0.033	0.0365						
12	VFD for PCC oven hot air circulation blower-2	0.033	0.0365						
13	VFD for PCC oven hot air circulation blower-3	0.033	0.0365						
14	VFD for PCC oven hot air circulation blower-4	0.033	0.0365						
15	VFD for ETP & STP Blower No.2	0.0432	0.0365						
16	VFD for RO High Pressure Pump	0.0144	0.0365						
17	VFD for Raw water transfer pump	0.0432	0.0365						
18	Total	0.477	0.6205						

Energy saving projects implemented in last 3 years

	ENCON Projects list for FY 2023-24									
S. No	Year	Title of Project	Annual Electrical Saving	Investment						
			(Million kWh)	(Rs in Million)						
1	2023-2024	Optimisation of street lighting by identifying non operational area and restrict the movement in night	0.0003	0						
2	2023-2024	Optimization of high mast lighting	0.0003	0						
3	2023-2024	SCV main paint shops power optimization	0.24	0						
4	2023-2024	Optimization of COP lab power supply in line with shop operation hours	0.024	0						
5	2023-2024	Relocating of paint shop portable compressor to LCV	0.02	0						
6	2023-2024	VFD for ETP air bower motor	0.02	0.40						
7	2023-2024	VFD for Compressor House water cooling pump	0.01	0.18						
8	2023-2024	Installation of HVLS fan for high efficiency and low power consumption	0.12	1.40						
Total			0.436	1.980						

BE BOLD | OWN IT | SOLVE TODETHER, BE EV WITHERD

Energy saving projects implemented in last 3 years

Relocation of 420 CFM compressor from Paint shop to compressor house.

For non working hour production activities the compressed air was supplied by running main compressor ATLAS COPCO make OIL FREE TWO STAGE SCREW WATER COOLED COMPRESSOR; KW: 250;OUTPUT: 1500 CFM CFT/KWH: 360;TYPE:

Cross functional team evaluated the air requirement for non production hours and un used compressor from Paint shop was shifted and installed at compressor house. ELGI make SINGLE STAGE AIR COOLED SCREW COMPRESSOR KW: 55; OUTPUT: 385 CFM; CFT/KWH: 420

Savings in Power by 20,000 units/Year. As small compressor is air cooled and hence water saving is also achieved

Energy saving projects implemented in last 3 years

VFD installed in ETP for air blower motor

BE BOLD | OWN IT | SOLVE TODETHER, BE EVENTHERD

Before: Running on full load controlled through valve.

After: Installed VFD kept the valve fully open and controlling blower speed through VFD.

Savings: 60 KWh/Shift

	Blower Energy	Running				
	Player	Energy	y Meter Read	Hours	Savings	
	Blower	Initial	Final	Difference	ference	
	Without VFD	1301421	1301435	14	10	60
		1001 121	1001100			Units/shift
	With VFD	1301435	1301444	9	10	Since Since
HE	N					

Innovative Projects Implemented

• On-Site Solar Generation Enhancement (Initiative taken in Dec 2023)

• Initiative: Charging of EV Buses during day time only.

• Result:

Solar Generation increased by 450 kWh /day (approx.) which is equivalent to a savings in Energy Cost by 1600 INR / day (approx.)

Solar Energy Generation (in kWh)										
Dorticulor	Date							Total	Average per day	
Particular	Day-1	Day-2	Day-3	Day-4	Day-5	Day-6	Day-7	Day-8	TOLAI	Average per day
Before	2420	1965	2300	825	2440	2145	2305	2490	16890	2111
After	2750	2870	2830	2675	775	3015	2695	2940	20550	2569
Difference	330	905	530	1850	-1665	870	390	450	3660	458

kWh

Before After

Utilization of Renewable Energy sources (Onsite)

TATA MOTORS Connecting Aspirations

SE BOLD | OWN IT | SOLVE TODETHER | BE EVENTHERD

Copyright, Confidential, Tata Motors Limited

Utilization of Renewable Energy sources (Offsite)

Year	Source (Solar, wind) Onsite	Installed capacity (MW)	Capacity addition after 2021 (MW)	Total Generation (million KWh)	Share % wrt to overall energy consumption
FY 2021-22		Through PPA	NA	1808700	75%
FY 2022-23	Wind + HESCOM			2965500	75.7%
Fy 2023-24				2155200	73%

Key features of RE 100

- At present our plant RE 100 requirements are based on Karnataka state regulations, TML Dharwad plant dynamic power requirement, PPA and low cost power availability.
- We have a 990 KWp solar roof top installed at our plant premises based on our plant fixed & variable consumption pattern, further it is at low cost and attracts no major grid charges
- Further we procure power wind bills through short term PPA which is at lower cost then grid power
- However due to dynamic production condition to achieve our RE 100 we procure a negligible share of green power from HESCOM
- To continue our RE 100 journey we have worked out plans till 2027 and same is reviewed periodically

GHG Inventorisation

Tata Motors committed to a comprehensive decarbonisation strategy based on Science Based Targets (SBTi). To accomplish this, a robust product strategy has been adopted for transitioning to a greener portfolio. Our aim is to achieve Net Zero greenhouse gas emissions for commercial vehicles businesses by 2045 respectively. We are committed to sourcing 100% renewable electricity in our operations by 2030 and setting interim science-based targets, ensuring a sustainable and low-carbon future Tata Motors has identified following emission categories Scope 1: Fuel burnt in plant operation Scope 2: Purchased electricity, steam, heating & cooling Scope 3:

> Purchased Goods & Services Fuel & energy related activities Upstream transportation & distribution Waste generated in operations Business Travel Employee Commuting Upstream Leased Assets Use of sold products Franchises emissions.

GHG Inventorisation

TATA MOTORS Connecting Aspirations

- As per available data TML-Dharwad is far ahead of it's competitors and peers.
- We have achieved a reduction in GHG emission by 89% since FY22
- TML-Dharwad has achieved 'ZERO' scope-2 emission in FY23 and sustaining the same.

We focus on deriving value out of all types of waste and ensuring their safe disposal. We strive to continuously maximize recycling and co-processing to ensure no waste is diverted to landfill or incineration facilities. Our internal Circularity Framework guides us to achieve 'Zero waste to landfill'

SN	Year (2021-23)	Type of waste	Quantity	GCV	Waste as percentage of Total fuel
	Not Applicable as T	ML will not utilize ar	ny waste inside t	he premises	(Under GCV recovery).

Type of waste generated	Quantity of v	<u>waste generat</u>	ed (MT/year)	Disposal method
_	2021-2022	2022-2023	2023-2024	_
Used Oil	0.84	3.95	5.19	Authorised KSPCB recyclers
Oil soaked cotton waste/Oil filter	3.03	6.43	4.63	
Waste or residue	7.44	8.67	3.63	To Conrocessing units
Process waste residues and powder coating waste	2.16	5.79	3.05	
Empty barrels/container /liners contaminated with haz. chemicals /Waste	7.1	20.41	16.49	Authorized KSPCB recyclers
Chemical sludge from waste water treatment	10.29	25.04	8.09	To Coprocessing units

Waste Utilization management

Pathways across different levels and enablers

Levels of circularity	ý 0	1	2	3	4	5
	No circularity Past	Low circularity Today	Moderate circularity 2025	High circularity 2030	Full circularity 2035	Net positivity in system 2040
Materials	Linear value chain	Production scrap looping	Recycled content Increased	High-quality recycling loops	Full "at level" recycling and transparency	Upcycling of waste

Material Circularity

Indirect Materials

- Circular Inflow
- Circular Outflow Recovery
- Potential
- Circular Outflow Actual Recovery

TATA MOTORS

Connecting Aspirations

Approach

- ✓ To start with select IDM
- Mature the supplier and internal process and governance
- ✓ Work closely with Purchase
- ✓ Scale Up

Scope

- 1. Oil
- 2. Hand Gloves
- 3. Coolant
- 4. Sealant
- 5. Cotton Waste

Oil and Hand gloves are the top 2 items as per purchase value

Material Circularity

=

(Circular Inflow + Circular Outflow)/2

SE BOLD (OWN IT) SOLVE TODE THER LED EVENTHETIC

Green Supply Chain Management

Environmental Procurement Policy

Tata Motors shall adopt a holistic approach to the procurement process by ...

- Expanding awareness of Tata Motors' 'Environmental Policy', and 'Code of Conduct' amongst Vendors, Contractors and Service Providers through various means;
- Evaluating 'environmental performance' of Vendors, Contractors and Service Providers along with quality and cost and giving priority to 'green' Vendors/Contractors and Service Providers and 'green' Products;
- Involving Vendors, Contractors and Service Providers to improve their environmental performance by establishing an Environment Management System;
- Educating Vendors, Contractors and Service Providers to improve their manufacturing process to reduce their carbon footprint and use of hazardous chemicals;
- Encouraging Vendors, Contractors and Service Providers to minimize logistics and packaging material, and maximize reuse and recycling of packaging material and use of recycled materials.

March 18, 2016

Guenter Butschek Chief Executive Officer and Managing Director

Green Supply Chain Initiative:

- We have adapted a holistic approach by rolling out environmental procurement policy.
- To assess the environmental impact of our supply chain analysis of energy and environment data are carried out by sharing an ONLINE questionnaire with all our suppliers & vendors.
- Received Vendor responses were then analyzed in terms of GHG emissions, water consumption, and waste generation.
- Process of identifying topics for further engagement with Vendors is on.

Plant Initiative:

At plant level below initiatives are carried out

- Use of long trailers in place of small trucks to reduce no incoming trucks
- Optimization of returnable packaging
- Replacement of one-time packaging with returnable packaging

EMS system and other requirements

KT2 : Real-time Equipment Monitoring

- **Digital analytics for Cost Optimization and** Reduction in GHG Emissions (Scope 1 & 2)
- **OEE improvement through Health Monitoring & Prescriptive Maintenance**

 Reduction in variable

cost

conversion cost leading to reduction in operational

DE BOLD | OWN IT | SOLVE TODETHER | BE EVENTHETIC

• Positive

contribution

to **EBIDTA**

- High Equipment **Availability**
- Improve Line/Equipment Efficiency

List of Project undertaken KT2

Plant Level Real time power consumption monitoring and Dashboard development.

Real time power consumption monitoring @ Paint shop & LCV Shop.

Real time Fuel consumption monitoring @ Paint shop & LCV

Under Implementation

Real time Water consumption monitoring Real time Compressed air monitoring Machine health monitoring -RBT

Optimization of Solar Power Generation & consumption

Copyright, Confidential, Tata Motors Limited

nnecting Aspirations Plant level Dashboards

TATA MOTORS

ISO 50001/IGBC rating

- > Air leakage audit is conducted on monthly basis for all shops.
- > Average air leakage for the plant is 1.9%.
- TML Dharwad is IGBC platinum rated plant since 2012
- In line with IGBC requirements we are having translucent poly carbonate sheets at shop floor walls and ceiling for day light panel provisions, day light pipe system at admin canteen, 3 number lakes for rain water harvesting (1.8 lakh cubic meter), low water flow taps, APFC for PF improvement, light density 11 watts/sqmt.

EMS system and other requirements

TATA MOTORS Connecting Aspirations

- Pumping of treated effluent by hydro-pneumatic system to save water and electricity.
- Low flow water fixtures for the domestic use.
- Treated water is used for gardening purpose through separate irrigation system.
- Drip and pop-up sprinkler for Horticulture Purposes.
- Separate water lines for process, domestic, drinking and flushing water requirements.

EMS system and other requirements

Energy Policy of Tata Motors is defined and documented as per the requirements of the Energy Management System Standard The energy policy plays a crucial role in aligning the organizations energy management efforts with its overall strategic dimensions.

TML Dharwad is ISO 50001 certified since 2012 by Bureau Veritas

- It provides a framework for setting and reviewing objectives and energy targets.
- Commitment to satisfy applicable legal requirements related to energy efficiency, energy use and energy consumption
- Build awareness among employees and stake holders
- Commitment to continual improvement of Energy performance and EnMS.

TML-Dharwad has bagged Silver Award at 9th CII National Competition on Low Cost Automation.

The Project was related with ensuring human safety and the award was conferred on 11 March 2024

NET ZERO commitment

With an unwavering vision, we dedicate ourselves to achieving holistic decarbonisation across our business, encompassing Scope 1, Scope 2, and Scope 3 emissions.

Our aim is to achieve Net Zero greenhouse gas emissions for commercial vehicles businesses by 2045 respectively. We are committed to sourcing 100% renewable electricity in our operations by 2030 and setting interim science-based targets, ensuring a sustainable and low-carbon future

Sustainability at a Glance:

Green Wind Power supply through

Green Power supply from HESCOM

Green Power from 990 KWp Solar

- **Rain Water Harvesting**
- Zero Liquid Discharge
- Hydrogeological Survey
- **Real time Groundwater Table**
- 100 % Metering of Water
- 100 % Compliance to Legal

Landfill/Pigg

ery

Biomethanat

ion

Copyright, Confidential, Tata Motors Limited

(IMI)

Δţλ

Recycling

Composting

Landfill/Incinerat

Key Milestones of TMCV Dharwad till FY23

BE BOLD [OWN IT] SOLVE TODETHER, BE EVENTHETIC

TATA MOTORS Connecting Aspirations

Key Milestones of FY 23-24 TMCV Dharwad

TATA MOTORS Connecting Aspirations

29

TML Dharwad participation in CII Awards has led to learning and development in field of energy conservation, low cost automation, innovation, safety, power quality , power reliability.

It is a prime platform were competitors from all industries are exhibiting their best practices and procedures which are inspiring us to learn and adopt.

The Jury members have always inspired us, motivated and guided us to perform and achieve organizational goals and sustain.

Few outcomes to share from CII learning area in past we are able to reduce our Specific energy consumption, enhance our RE share to 100%, Zero waste landfill, Net water positive, enhancement of safety system, improvement of operation through kaizens, low cost automation implementation and adopting to new innovative technologies.

BE BOLD | OWN IT | SOLVE TODETHER, BE EVINTHETIC

Thank You

sudhir.kadam@tatamotors.com 9036097022

